What about high dimensions? XER () UNitrold (ant quite ternary search ... Under Stronger Condition Convexity We (an Use ~ 199;ry Alschot This is the most important algo in Modern ML. It's how Chot GPT learned. Today: GD in 1-d, X = R

Formally, HAEFOID $\left(\left((I-\lambda) \times + \chi Y \right) \leq (I-\lambda) f(\chi) + \chi f(Y) \right)$ mixing weights (1,f(1)) $\lambda = \overline{h}$

Another fact: $f(\gamma) \geq f(\chi) + \frac{f(\chi + \lambda(\gamma - \chi)) - f(\chi)}{\chi}$ = f'(x)(y-x)lim λ⇒0

We would love to just simulate a
rolling ball
$$(M \rightarrow 0)$$
. Unfortunately,
we must discretize :

fis L-lipschitz if

$$\left|f(x) - f(y)\right| \leq L|x - y|$$

Nearby points have close values.

f is
$$\lfloor -Smooth \ if$$
 "no convers"

$$\left| f(x) - f(y) \right| \leq \lfloor | x - y |$$

Gradient quivies Why old?

$$\left| f'(x) - \frac{f(x+s) - f(x)}{s} \right| = O(s) \ if \ smooth.$$

sin. with fundin quoves

$$GD \ Take \mid : \ Quadratics \ (Pat \ VI, \ Section \ S.2)}$$

In this section, $f = q \ a \ quadratic$

 $q(x) = ax^2 + bx + c, \ a \ 70$

What is
$$q'?$$

 $q'(x) = \frac{\partial}{\partial x} (\partial x^2 + bx + c)$
 $= 2\partial x + b = 2\partial (x - x^*)$
Solvity check: $q'(x^*) = 0$
Hence, $L = 2\partial - smooth$:
 $|q'(x) - q'(y)| = 2\partial |x - y|$
What step size?
 $X - Mf'(x) = X - M \cdot 2\partial (x - x^*)$
 $M = \frac{1}{2} = \frac{1}{L} \Longrightarrow$ step to x^*

overshoot

$$N \ge \frac{1}{2}$$

 $M \ge \frac{1}{2}$
 $M \ge \frac{1}$

, Just as best lines fit $f(\gamma) \approx f(\chi) + f'(\chi)(\gamma - \chi)$ Best quadratic fit $f(\gamma) \approx f(\chi) + f'(\chi)(\gamma - \chi)$ $+\frac{1}{2}f''(\chi)(\gamma-\chi)^2$ 51 ΗX, Υ (In be male rijonous: $f(\gamma) \leq f(\chi) + f'(\chi)(\gamma - \chi) \\ + \frac{L}{2}(\gamma - \chi)^{2}$

(sel notes) Never overshoots. (Jaim: After $T = \frac{L^2}{\xi^2}$ iters, $f(X_4) \leq f(X^*) + \xi$ global opt

Proof:
$$\triangle \leq \frac{1}{2}$$
,
 $f(x_0) \leq f(x^*) + \frac{1}{2}(x_0 - x^*)^2$
Use critical points, $T \geq \frac{1^2}{5^2} = \frac{21\Delta}{5^2}$
 $f(x_0) - f(x^*) \leq f'(x_0)(x - x^*)$
 $(convexity) \leq |f'(x_0)| \leq 2$
 $(convex) \leq |f'(x_0)$

ley idez: momentur brenember & Sproothness = history helps! for dut GPT, $\sqrt{\delta} = |0|^2$ Why is this important? Generalizes verbation to Rd (critical points & globa (optima) $abla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$ (CURSONENT " "hint" of where to find X*